
The Definitive Guide to
�Passwordless Authentication

2023 EDITION

Table of Contents

Passwords are being phased out of the SaaS space. While
most B2C companies are already embracing passwordless, B2B
companies are still playing catch up when it comes to embracing the
security, usability, and productivity benefits of this authentication
methodology. This guide will cover all aspects of Passwordless and
help you get started in the best way possible.

What is Passwordless Authentication?

The Pros and Cons of Passwordless SSH Authentication

Main Types of Passwordless Authentication

Passwordless Authentication Best Practices

Passwordless: The New Authentication Standard

THE DEFINITIVE GUIDE 01

02

03

05

08

12

What is Passwordless
Authentication?
Passwordless authentication is all about stopping the use of passwords to bolster security,
improve brand performance, and conserve valuable IT resources. This kind of authentication
works well for �all kinds of SaaS applications - legacy, on-prem, cloud-based, and even ones
with hybrid setups. �It’s also better for users on-the-go who are becoming more dependent on
smartphones and tablets.

For example, let’s focus on the fingerprint authentication
methodology and how it works behind the scenes when an
end-user opts for �this technique.

The private key and public key are two separate entities. The
private key can be tied to the fingerprint authentication that the
end-user creates with private tools like smartphones or laptops.
This private key, stored on the device itself, can only be accessed
by the end-user. The public key is provided to the SaaS application
or website, where the user account is actually being created.

Opting for Passwordless can help you enforce enhanced security standards while also implementing an
improved user experience (UX) to increase customer satisfaction. You can also significantly reduce the
total cost of ownership (TCO), since passwords are extremely expensive to maintain. For example, you
can have IT staff resource wastage and cumbersome damage control processes after data breaches.

Related: Security Measures to Prevent Authentication Attacks

THE DEFINITIVE GUIDE

DID YOU KNOW?

As per Statista, global revenue from passwordless
authentication sales, currently at around 15 billion USD,
is expected to cross the 25 billion USD by 2025 and
touch 30 billion USD in 2030.

Public Key

Private Key

02

https://frontegg.com/guides/saas-applications-architecture-the-how
https://frontegg.com/blog/biometric-authentication
https://frontegg.com/blog/what-are-the-security-measures-to-prevent-authentication-attacks
https://www.statista.com/statistics/1290586/passwordless-authentication-global-market-size/

THE DEFINITIVE GUIDE 03

The Pros and Cons of
Passwordless SSH (Secure
Socket Shell) Authentication
So, does this mean that you should quickly run tomorrow morning to delete ALL passwords
from your database and solely provide SSH passwordless based authentication? Should you
unconditionally opt for this move that employs a pair of public (resides on the server) and
private keys (brought by clients for authentication) for asymmetric encryption? Let’s consider
the pros and cons.

The pros when it comes to passwordless authentication are
rather obvious:

Brute Force Attack
Immunity
More often than not,
passwords tend to be
weak. Human nature drives
people to maintain the
same password across all
SaaS apps, which leads
to an increased risk of
password breaches.

Improved User �
Experience (UX)
Users do not need to
remember passwords, nor
do they have to change
them constantly and
�follow strict password
policy �rules. Passwordless
option offers an easy flow.

Resource Friendly
Getting rid of passwords
simply allows organizations
to use up less resources,
not to mention the cost
saving �that comes with it.
There are also no password
resets �($70 average cost
per reset).

https://www.okta.com/blog/2019/08/how-much-are-password-resets-costing-your-company/
https://www.okta.com/blog/2019/08/how-much-are-password-resets-costing-your-company/

THE DEFINITIVE GUIDE 04

The cons of the passwordless approach, amongst other �
things, are:

Hard to Implement
In most cases, email + passwords are very
easy to implement but a flow where we
need to maintain expirations on tokens and
ship out emails,makes the implementation
complex and costly.

Dependency on 3rd Parties
Using password+email authentication
means �we can take care of activation
immediately. �When one of the users is not
getting his activation email, the dependence
makes it� harder to integrate.

Still Not an Established Standard
While users are used to email and
password-based authentication, the “entry
point” for passwordless authentication is
somehow limited.

Less Relevant in the Case
of IDP / SSO Authentication
With SAML/SSO, there is no need for
passwordless SSO authentication (at least on
the app side). Users have one password, the
same one used for their email login.

Passwords
2 Factor Authentification

High Security

Inconvenient Convenient

Low Security

Passwordless
Authentification

Passwords

https://frontegg.com/sso

THE DEFINITIVE GUIDE 05

Main Types of Passwordless
Authentication
Before getting started with passwordless authentication, you will need to pick your
flavor. There are basically three main variations you should be considering.

1. One-time passwords (otps)

OTPs are essentially numeric codes that have been linked to a unique reference. Since these unique
codes are sent directly to the user, only the server knows about it. All the user needs to do is enter the
code into the platform, following which authentication is completed and access is granted. How are
these codes sent? Mobile is the primary medium, but emails can also be used.

PROS
Other users can’t access
the unique reference -
very secure, The OTPs can
be sent in voice format -
more versatile. Also serves
as device verification

CONS
Hacking or breaching the
user’s phone or laptop can
be disastrous. Using two
devices can create friction
in some use cases

USE CASES
Finance, banking
platforms, insurance
companies, healthcare,
government and
educational services

SMS

563728 563728

THE DEFINITIVE GUIDE 06

2. Magic Links

Magic links, also known as one-click solutions, have become extremely popular due to their
ease-of-use and email-centric characteristics, which are extremely suitable or B2B settings.
These one step solutions are basically URLs with authentication tokens that are sent via
email. All the user needs to do is to click on them to trigger the authentication process and get
redirected to the app.

PROS
Minimal friction because
only one action is required.
The URLs can also be sent
via mobile if needed. Users
can be redirected with
parameterized URLs

CONS
Hackers with unauthorized
access to the user’s email
can wreak havoc

USE CASES
Software-as-a-Service
applications and
platforms across all
industries productivity,
entertainment, utility, and
more

Sign in

Check your email

Success!

THE DEFINITIVE GUIDE 07

3. Hardware/Physical Authentication

Magic links, also known as one-click solutions, have become extremely popular due to their
ease-of-use and email-centric characteristics, which are extremely suitable or B2B settings.
These one step solutions are basically URLs with authentication tokens that are sent via
email. All the user needs to do is to click on them to trigger the authentication process and get
redirected to the app.

PROS
Considered to be
extremely secure. Can
also be used to verify
devices. Enhanced user
satisfaction metrics

CONS
Requires investment in
infrastructure. Privacy
implications that can
potentially conflict with
regulatory requirements

USE CASES
Travel (biometric
passports and fingerprint
readers), online gaming
and betting, hotel check-
ins

Successful!
Mike Smith

THE DEFINITIVE GUIDE 08

Passwordless Authentication
Best Practices
Before even diving into the specifics of passwordless authentication, you need to brainstorm
with your team and try to answer some key questions. What is your target audience? What’s
their average age? Can you pinpoint specific geolocations? What kind of data are you handling?
What regulatory rules do you need to comply with? These questions will help you get a better
feel for what is really needed.

Enjoying passwordless authentication is possible only when you have taken the right steps
while setting it up. Once you have decided on your strategy, you should embrace the following
best practices while getting started.

Fintech

B2B Saas

Mobile-First

Desktop-First

Low Data
Sensitivity

High Data
Sensitivity

Digital
Healthcare

Ecommerce

B2C Tech

THE DEFINITIVE GUIDE 09

1. Going Passwordless is Not a One-Off Move

Passwordless authentication is here to stay, but mose SaaS users are still using passwords in one
way or another. The shift to passwordless is inevitable, but it has to be done with user acceptance
and onboarding. Make sure your users know about the upcoming shift to make adoption as
smooth as possible. Social media logins can be helpful add-ons while making the move.

2. Connect Identities to Devices Tightly

As obvious as this requirement may sound, many companies fail to create air-tight
connections between end-devices and identities. The reason for this is simple. When it comes
to passwordless authentication, the user’s device is the authentication origin. Seamless and
ongoing identity binding is key when it comes to blocking out spoofing attempts and other kinds
of malicious activity.

3. Ensure Secure and Smooth Account Recovery

Another often overlooked aspect of passwordless authentication is account recovery. The
recovery has to be smooth to minimize friction, but also secure to steep clear of privacy and
compliance issues. Therefore, the recovery should be client-side and never on the server side,
something that significantly reduces the risk of injection-based threats or credential exploits.

PRO TIP: Introduce passwordless as an optional method before making the switch

PRO TIP: Register all devices properly while ensuring explicit transitive trust

PRO TIP: Always opt for secured and authenticated channels to transfer data

THE DEFINITIVE GUIDE 10

4. Strive to be Verifier Compromise Resistant

It’s also best to be prepared for the worst. You should ideally make sure that any IdP exploits �
will not result in data theft. With privacy laws like GDPR, HIPAA, and CCPA in full force, any �
such leak can result in hefty fines and brand damage that can be hard to recover from. For
example, if user authentication secrets are being stored, your ecosystem is not really verifier
compromise resistant.

5. Invest in an Authentication Ecosystem

Passwordless authentication is much more than a one-time action. Companies should strive
to get a holistic view of their entire authentication ecosystem and take control of the user
experience, while securing it. How? Try combining user trust scoring and Mobile Threat Defense
(MTD). The concept of continuous authentication has to be instilled relentlessly to create a
robust habitat.

Now that you have the fundamental understanding of passwordless authentication and
what crucial steps need to be taken before getting started, you need to find the right
vendor for your specific needs. We’ve got you covered on that front as well. Our Top 10
Passwordless Vendors list has the best options you can find today, all analyzed and
compared for your convenience.

PRO TIP: Pen test your app from time to time to gauge your security posture

PRO TIP: Use API integrations to eliminate siloed data and gain a 360 view

https://frontegg.com/blog/passwordless-authentication-for-saas
https://frontegg.com/blog/passwordless-authentication-for-saas

THE DEFINITIVE GUIDE 11

Picking the right passwordless method can also be a challenging task.

This should be done by understanding what your customers are doing and how they are
using your product. For example, mobile vs desktop is a major consideration today. B2B
SaaS businesses are desktop heavy. So it may be a great idea to go with email magic links
or OAuth based authentication. eCommerce use cases are mobile-heavy, requiring more
smartphone verifications and social logins.

Desktop-First

Mobile-First

Mobile
biometrics

WhatsApp
Passcodes

SMS
Passcodes

PIN Creation
Verification

OAuth

WebAuthn

Authenticator App
Passcodes

Email Magic
Links

Push
Authentication

Passwordless: The New
Authentication Standard
Passwordless authentication is soon becoming the industry standard. The idea of not requiring
a user to remember new passwords for multiple accounts enhances the level of trust in the
authentication flow, eventually boosting engagement and satisfaction metrics. Getting
started with it and implementing it correctly however, can be challenging. Let’s take a closer
look at things.

For defining the front-end for your email magic link implementation, you’ll need:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

<!DOCTYPE html>
<html>
 <head>
 <title>Passwordless Authentication</title>
 <script src="./frontend.js"></script>
 </head>
 <body>
 <h1>This is where you'll put your email to get a magic link.</h1>
 <form>
 <div>
 <label for="email_address">Enter your email address</label>
 <input type="email" id="email_address" />
 </div>
 <button type="submit" id="submit_email">Get magic link</button>
 </form>
 </body>

As a result, you’ll be looking at frontend.js file along these lines:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

window.onload = () => {
 const submitButton = document.getElementById("submit_email");
 const emailInput = document.getElementById("email_address")
 submitButton.addEventListener("click", handleAuth);
 /** This function submits the request to the server for sending the user a magic
link.
 * Params: email address
 * Returns: message
 */
 async function handleAuth() {
 const message = await axios.post("http://localhost:4300/login", {
 email: emailInput.value
 });
 return message;
 }
};

THE DEFINITIVE GUIDE 12

With this basic server in place, we can start adding more functionality. Let’s go ahead and add the
email service we’re going to use. First, add nodemailer to your package.json and then import it.

With this basic server in place, we can start adding more functionality. Let’s go ahead and add the
email service we’re going to use. First, add nodemailer to your package.json and then import it.

Now, we can shift our focus to the back-end (for example, Node.Js). Let’s start by creating an
express app and installing a few packages on the way:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

import cors from "cors";
import express from "express";

const PORT = process.env.PORT || 4000;
const app = express();
// Set up middleware
app.use(cors());
app.use(express.json());
app.use(express.urlencoded({ extended: false }));
// Login endpoint
app.post("/login", (req, res) => {
 const email = req.body.email;
 if (!email) {
 res.statusCode(403);
 res.send({
 message: "There is no email address that matches this.",
 });
 }
 if (email) {
 res.statusCode(200);
 res.send(email);
 }
});
// Start up the server on the port defined in the environment
const server = app.listen(PORT, () => {
 console.info("Server running on port " + PORT)
})
export default server

Import nodeMailer from "nodemailer";

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// Set up email
const transport = nodeMailer.createTransport({
 host: process.env.EMAIL_HOST,
 port: 587,
 auth: {
 user: process.env.EMAIL_USER,
 pass: process.env.EMAIL_PASSWORD
 }
});
// Make email template for magic link
const emailTemplate = ({ username, link }) => `
 <h2>Hey ${username}</h2>
 <p>Here's the login link you just requested:</p>
 <p>${link}</p>

THE DEFINITIVE GUIDE 13

Next, we need to make our token that holds the user’s info. This is just an example of some of the
basic things you might include in a token. You could also include things like, user permissions,
special access keys, and other information that might be used in your app.

There are only two more things we need to add to the code to get the server finished. Let’s add an
account endpoint. Then we’ll add a simple authentication method.

Now we can update the login endpoint to send a magic link to registered users and they’ll be
logged in to the app as soon as they click it.

1
2
3
4
5
6

// Generate token
const makeToken = (email) => {
 const expirationDate = new Date();
 expirationDate.setHours(new Date().getHours() + 1);
 return jwt.sign({ email, expirationDate }, process.env.JWT_SECRET_KEY);
};

// Get account information
app.get("/account", (req, res) => {
 isAuthenticated(req, res)
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Login endpoint
app.post("/login", (req, res) => {
 const { email } = req.body;
 if (!email) {
 res.status(404);
 res.send({
 message: "You didn't enter a valid email address.",
 });
 }
 const token = makeToken(email);
 const mailOptions = {
 from: "You Know",
 html: emailTemplate({
 email,
 link: `http://localhost:8080/account?token=${token}`,
 }),
 subject: "Your Magic Link",
 to: email,
 };
 return transport.sendMail(mailOptions, (error) => {
 if (error) {
 res.status(404);
 res.send("Can't send email.");
 } else {
 res.status(200);
 res.send(`Magic link sent. : http://localhost:8080/account?token=${token}`);
 }
 });
});

THE DEFINITIVE GUIDE 14

This gets the user’s token from the front-end and calls the authentication function.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

const isAuthenticated = (req, res) => {
 const { token } = req.query
 if (!token) {
 res.status(403)
 res.send("Can't verify user.")
 return
 }
 let decoded
 try {
 decoded = jwt.verify(token, process.env.JWT_SECRET_KEY)
 } catch {
 res.status(403)
 res.send("Invalid auth credentials.")
 return;
 }
 if (!decoded.hasOwnProperty("email") || !decoded.hasOwnProperty("expirationDate")) {
 res.status(403)
 res.send("Invalid auth credentials.")
 return;
 }
 const { expirationDate } = decoded
 if (expirationDate < new Date()) {
 res.status(403)
 res.send("Token has expired.")
 return;
 }
 res.status(200)
 res.send("User has been validated.")
}

THE DEFINITIVE GUIDE 15

This authentication check gets the user’s token from the URL query and tries to decode it
with the secret that was used to create it. If that fails, it returns an error message to the
front-end. If the token is successfully decoded, a few more checks occur and then the user is
authenticated and has access to the app!

What if you could skip all of this work and get started with an end-to-end user
management solution that already has the coding covered?

At Frontegg, we have already taken all of these requirements into consideration
when building our self-served user management platform, with passwordless
authentication enabled by default. If you have any questions and are not sure what
implementing passwordless authentication should look like in your use case, feel
free to reach out and get in touch with our experts. We are here to help.

CONTACT US

https://portal.frontegg.com/signup

