
The Complete Guide
to SaaS Multi-Tenant
Architecture

Table of Contents

Introduction ...

SaaS Multi-Tenant Architecture for Enterprise - The Why..................................

Introduction to SaaS ..

The Evolution of SaaS Architecture for Enterprise: From Old Monolithic

Models to Multi-Tenant Functionality...

The Different Types of SaaS Architecture..

Single Tenant vs Multi Tenant SaaS Architecture for Enterprise

Multi-Tenant vs Multi-Instance Architecture ..

Summing it Up ...

SaaS Multi-Tenant Architecture for Enterprise - The How..................................

Getting Started with Multi-Tenant Development..

How to Pick the Right SaaS Architecture? ...

The Eternal Question: Single-Tenant or Multi-Tenant?

Let’s Talk About Serverless Architecture ...

SaaS Multi-Tenant Architecture for Enterprise - The How..................................

Working With Top Cloud Providers...

The Future Belongs to Multi-Tenancy...

03

04

04

05

06

08

08

09

10

10

11

12

13

14

14

15

02 © Frontegg. The Complete Guide

Introduction
Software as a Service (SaaS) applications are essentially eliminating traditional on-premise applications
thanks to their single-instance and multi-tenant architecture. These applications are hosted centrally and
licensed on a subscription basis, making it a very efficient and manageable business model that can be
scaled up fast. Salesforce, ZenDesk, Dropbox, Slack, HubSpot, and MailChimp are just a few examples of
SaaS user-favorites.

This guide will dive into the various SaaS architecture options you have today and cover the main challenges
you will be facing while building your SaaS application. Without further ado, let’s get started.

This means that businesses, both SMBs and enterprise ones, now know that the
benefits outweigh the risks in today’s reality. But what does this mean when it comes to creating and
developing the app? What’s the importance of self service and multi-tenancy in the SaaS space today?

As per a recent Frontegg survey, 100% of the respondents
acknowledged the use of SaaS applications at work, which isn’t
surprising with the rise in remote work due to COVID-19.

03 © Frontegg. The Complete Guide

SaaS Multi-Tenant
Architecture for
Enterprise - The Why

A big reason for the emergence of SaaS applications is their improved security standards, making it easier
for companies to move on from on-prem options.

The world is gravitating towards SaaS consumption because it allows them to save time, money, and
resources when it comes to IT maintenance and troubleshooting. But what enterprise SaaS architecture is
right for you? Which one should you go for to achieve optimal security standards and maximum
performance? This article will shed some light over the top SaaS variations you can choose from today.

The SaaS methodology has been around since the late 90s, but it has taken off in a big way due to the massive
spike in internet usage over the last decade. As per Gartner estimates, it has already passed the $100 billion
mark, doubling the rivalling Infrastructure-as-a-Service (IaaS) methodology. Platform-as-a-Service (PaaS) and
Desktop-as-a-Service (DaaS) also can’t hold a candle to SaaS right now.

Introduction to SaaS

Table 1. Worldwide Public Cloud Service Revenue Forecast (Millions of U.S Dollars)

Total Market

Desktop as a Services (DaaS)

Cloud System Infrastructure Services (IaaS)

Cloud Application Infrastructure Services (PaaS)

Cloud Application Services (SaaS)

242,697 257,867 306,948 364,062

616 1,203 1,951 2,535

44,457 50,393 64,294 80,980

37,512 43,498 57,337 72,022

102,064 104,672 120,990 140,629

04 © Frontegg. The Complete Guide

It all started in the monolithic era, where all APIs, databases, services, and the UI were baked together into a
unified executable process. The Presentation Layer was responsible for communicating with the various
Controllers, while the data layer took care of the Model. The Controllers were responsible for the logic part and
the View took care of the presentation layer. A pretty straightforward arrangement.

There were two main variations with MVC. First, there was the Active MVC pattern, where the Model notified
the View when changes were made by the Controller. This was not the case with the other variation, the
Passive MVC pattern. With this variation, the notifications tasks were performed by the Controller. Passive
MVC was better to create separation between business and presentation logic.

Unfortunately, as DevOps started going mainstream, the monolithic based applications were simply not
dynamic enough to handle the frequent changes made by the development teams. The Continuous
Integration Continuous Deployment (CI/CD) pipeline started facing bottlenecks and performance issues. This
is before we dive into problems with scaling up (and down) due to the rigid infrastructure.

The Evolution of SaaS Architecture for Enterprise:
From Old Monolithic Models to Multi-Tenant Functionality

So what is SaaS all about? It’s a software licensing and delivery business model where you get partial or full
access to the centrally-hosted application that is easier to consume and update. The Application Service
Provider (ASP) is now essentially “shrink-wrapping” the software to business users via the internet, giving
users a user-friendly and feature-rich experience with zero investment in maintenance.

Besides the aforementioned scaling and maintenance benefits, SaaS applications allow organizations to
shift from a reactive approach to a proactive one. They can quickly add functionality to their applications
with minimal investment in in-house development. Furthermore, integration is usually a breeze to ensure
short time-to-value, thus enabling faster time-to-market with optimal quality.

There are two main types of SaaS varieties today:

Vertical SaaS - Industry centric solutions (finance, healthcare, etc.)

Horizontal SaaS - Industry agnostic solutions focusing on functionality

The Model-View-Controller (MVC) approach

05 © Frontegg. The Complete Guide

https://frontegg.com/blog/the-evolution-of-saas-architecture

Let’s take a closer look at the main SaaS architecture patterns that are in use today and learn more about
the pros and cons that come with their implementation.

The Different Types of SaaS Architecture

As explained earlier, this is the traditional way of doing things. The monolithic SaaS application is a single
and indivisible module that cannot be split or segmented for optimizing development. You are basically
looking at one big database and a solution that is built around a server-side and client-side interface.
Everything is unified with all functions being managed and served in one location.

Monolithic Architecture

The microservice architecture is powered by Application Programming Interfaces (APIs). All functions are
broken down to independent modules that can be deployed separately as required. The APIs then allow
these modules to communicate with each other and sync their independent processes to work as one
single entity. Each service can be upgraded, updated, and scaled separately for added flexibility.

Microservices Architecture

As the name suggests, a single-tenant SaaS architecture basically caters to one customer at a time. The
meaning of this is clear - there is a dedicated software instance, single infrastructure, and one database
that is serving the entity that is paying for the service. There is no sharing whatsoever and the entire
development environment is dedicated to one client at a time.

You also have the Multi-Single-Tenant (MST), where multiple customers can be
served by setting up another environment with individually-provisioned instances.

Single-Tenant Architecture

Pros: Less cross-cutting issues, Easier to monitor, Straightforward testing

Cons: Complex while scaling up, Difficult to make big changes, Technology barriers

Pros: Improved security levels, Customization is easier

Cons: Resource heavy, Costly to maintain

Pros: Resource and time friendly. Enhanced scalability

Cons: Cross-cutting issues, Complex architecture dynamics, Testing problems

There was a need for a more dynamic methodology that would align with the modern development practices.
This is where microservices entered the picture. The main idea behind this new methodology was that every
service was the owner of its own data. This segregation allowed quicker testing and faster CI/CD capabilities
to improve scaling capabilities without compromising on quality.

06 © Frontegg. The Complete Guide

Unlike Single-Tenant architecture, the Multi-Tenant variation is more focused on sharing resources, especially
software instances and databases. However, each tenant’s data is protected and saved in different places for
obvious reasons. The financial benefits of this methodology are clear - having multiple customers allows to
lower the environment and infrastructure costs significantly.

Multi Tenant Architecture (SOA)

Pros: Pocket friendly, Easier on the integration front, Smoother maintenance

Cons: Harder to customize, Potential security loopholes, Complications with updates

“Multi–tenancy is really the future of our industry.”
Marc Benioff, CEO, Salesforce.com

Single tenant app model

Multi tenant app model

07 © Frontegg. The Complete Guide

While multi-tenant SaaS architecture has clearly taken a lead over the single-tenant variation, the latter is not
going away anytime soon as some use cases still require it. Think about a military application that requires the
highest levels of security and customization for best results. The single-tenant SaaS architecture is the way to
go in such scenarios. The same can apply for sensitive government setups.

The multi-instance SaaS architecture is another variation that is gaining popularity in the IT space today. Just
as the name suggests, there is no resource-juggling involved with this methodology. There are separate
software instances (data items) that simply run parallel to one another. Unlike multi-tenant scenarios, there
are no buffers or remote machines involved, which significantly improves performance.

Multi-Tenant vs Multi-Instance Architecture

Single-tenant architecture is here to stay as it performs better on the security front, which also makes it
easier for businesses to demonstrate ongoing compliance. The security risks are simply more isolated. You
also have more control on what’s going on the customization and personalization fronts. But that’s where the
advantages more or less end when it comes to single-tenant SaaS architecture. Single-tenant SaaS
architecture allows seamless and smooth cost-sharing for serviceability, ongoing governance, and
deployments. Resource utilization is significantly improved and so is the adding/onboarding of new
customers. Furthermore, scaling up becomes much easier since you have more computing capacity and
more free resources on-demand to get the job done fast.
It comes as no surprise that leading on-demand SaaS applications like Slack,Zendesk, Bogo, and other
market-leaders have gone the multi-tenant way.

Single Tenant vs Multi Tenant SaaS Architecture for Enterprise

08 © Frontegg. The Complete Guide

Ongoin Maintenance

Scaling Capabilities

Cost Effectiveness

Customization

Security/Compliance

Single–Tenant Multi–Tenant

Every user/client has a
dedicated secure database

Data leaks or breaches
can cause more damage

It’s easier to customize the
dedicated architecture

Every architecture update
affects multiple clients

A new instance needs to be
created for every user/client

All users/clients share the
same instance

Scaling up can become
extremely challenging

Scaling up becomes
smooth and seamless

Requires large teams to build,
maintain, and update

Significant resources
and manpower savings

Now that we have taken a closer look at SaaS architecture and learned about the benefits of
multi-tenancy, let’s move on and examine how it can be implemented for improved productivity and
optimized performance metrics.

Summing it Up

Sagi Rodin, Co-Founder and CEO, Frontegg

Another advantage multi-instances have over multi-tenancy is that data is completely isolated, which means
that there are minimal security risks involved. Each team has its private database and ecosystem, which
means that there is little to no incentive for hackers. Scaling up is also much easier and so is availability, since
single faults can lead to multiple downtimes in multi-tenant environments.

Multi-instance setups have their downsides. They’re less cost-effective and are harder to maintain and deploy
frequently, an important DevOps requirement.

Multi-Instance SaaS Architecture Source:Scaleway

“You need to get started in the SaaS space with accurate planning and
finding the right solutions for your operational, compliance, security,
and business needs. Besides being proactive, you need to adopt the
principles of self-service and multi-tenancy. That’s the only way you can
achieve sustainable growth today.”

09 © Frontegg. The Complete Guide

https://blog.scaleway.com/saas-multi-tenant-vs-multi-instance-architectures/

SaaS Multi-Tenant
Architecture for
Enterprise - The How
It’s no coincidence that Software-as-a-Service (SaaS) has leapfrogged rivaling methodologies like
Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). Let’s learn more and show you how to
get started with your SaaS journey.

Before getting started you will need to analyze your target audience and understand the market/s you will
be operating in. After defining these basic needs, comes the stage where you need to understand the
technical requirements your SaaS app architecture needs to accommodate. This article will dive into these
exact specifics and introduce you to the best available options in the market right now.

Like any other project, the first step and most important one is planning.

Many organizations fail to pick the right type of SaaS application architecture, leading to a disastrous
chain-reaction that becomes hard to deal with as scaling up starts. Beyond the complexity involved in
maintaining bad architectural decisions, it also has a direct impact on the services you are offering and pricing
flexibility, which are the biggest reasons you are getting started with SaaS in the first place.

Getting Started with SaaS App Development

Here are the three crucial factors you should inspect closely before getting started:

Infrastructure and Hardware - This is where you need to pick the right cloud vendor for
your needs and tech stack to go with it

IT Administration - You need to take care of provisioning automation, while also ideally
trying to automate installations, backups, and updating processes

Licensing - Your SaaS model needs to be cost optimized when it comes to onboarding
feature selection and other important usage matrices

HTML, along with CSS and JavaScript, are powering the SaaS revolution.

10 © Frontegg. The Complete Guide

Picking the right SaaS architecture model for your business is very important. For example, if you have
picked isolated app Virtual Machines (VMs) for your ecosystem. This will let you achieve optimal security
and performance metrics, but these boxes will not be fully utilized. But if you take the other route and share
the DB and app servers with multiple clients, a random spike can trigger performance issues.

Related: The Evolution of SaaS Architecture

Nothing is irreversible in the IT/SaaS space, but going the wrong route will lead to costly and time consuming
realignment processes that will impact your business.

Now that we have established the basic best practices that need to be adopted in the initial planning
stage, it’s time to get familiar with the 4 SaaS architecture types.

How to Pick the Right SaaS Architecture?

Type 1 SaaS Architecture – This type of architecture basically requires runtime and data
isolation, but not necessarily on the cloud

What’s it right for? Non-cloud use cases like banking and finance businesses

Type 2 SaaS Architecture – Unlike Type 1, this architecture needs runtime and data isolation
on the cloud as well. The cost of isolation is put on customers

What’s it right for? Customers who don’t want to share infrastructure and the app

Type 3 SaaS Architecture – Here, the app is shared with all customers, which means that
there is no runtime isolation whatsoever (minimal deployment)

What’s it right for? Privacy-conscious customers unwilling to share data storage

Type 4 SaaS Architecture – This type of SaaS architecture is all about zero deployment
where all customers share the app and database infrastructure

What’s it right for? High onboarding frequency scenarios. For example, Wordpress.

TOP SAAS APPLICATION ARCHITECTURE CONSIDRATIONS

11 © Frontegg. The Complete Guide

https://frontegg.com/blog/the-evolution-of-saas-architecture

If you have customers looking for extremely high levels of reliability, security, and customization, single
tenancy might be the way to go. It is also easier to migrate to new environments and perform quick
backups (and recoveries). Just keep in mind that the SaaS route will come at a price, literally. These SaaS
ecosystems are often underutilized and very costly to configure, manage, and maintain.

Multi-tenant SaaS architecture is the better option if you want to create a scalable business model that is
flexible and versatile. Here are some benefits:

The Eternal Question: Single or Multi-Tenant?

As explained earlier in this guide, your customer requirements and behaviors should dictate your SaaS
architecture choice. This is the only way to achieve sustainable growth and steer clear of situations where
your development teams have to rebuild everything from scratch. SaaS is a profitable, smooth, and
manageable methodology. But this is valid only if you minimize operational costs and work.

Related: The Evolution of SaaS Architecture

SaaS Type 2

SaaS Type 3

SaaS Type 4

SaaS Type 1

DATA
ISOLATION

RUNTIME
ISOLATION

CLOUD
USAGE

ONBOARDING
FREQUENCY

EXTREME

VERY HIGH

LOW

HIGH

Lower Maintenance Requirements - All ongoing maintenance costs can be baked into
your pricing models. Updates and patches apply to all users

Cost and Resource Saving - Everything is shared - databases, applications, services, and
resources. The result - lowered operational costs

Feature Rich and User Friendly - Onboarding is significantly faster and easier.
Self-service features enhance customer experience and brand performance

Improved Efficiency - While this requires the right infrastructure and tools, all users can
ideally get the same level of service and performance

Better Scalability - All of the aforementioned benefits allow multi-tenant centric
businesses to scale up faster thanks to the added elasticity

SaaS Architecture Types: Compared

12 © Frontegg. The Complete Guide

https://frontegg.com/blog/the-evolution-of-saas-architecture

But like everything in life, serverless architecture also has its flaws and limitations that need to be
factored into your decision-making process. The biggest and more significant one is the vendor lock-in
issue. Depending on an external third-party vendor will take away a lot of your control. There is also the
“cold-start” issue, where the platform needs to initialize and fire up internal resources, causing delays.

Here are just a few of them:

Quick(er) Deployment - Zero provisioning needs. Automatic scaling

Integration - Agile-friendly, works well with microservices, less complex

Focus on UI/UX - Your development teams can focus on features/frontend

Flexible Infrastructure - Buy servers on-demand. Scale up (or down) fast

Better Latency - Access points all around the world for better performance

Single and multi tenant SaaS architecture, with all of their variations, are not your
only options. You should also take Serverless Architecture into consideration.

Serverless architecture can operate as a BaaS (Back-End-as-a-Service), where the application’s backend
is primarily on the cloud. It can also be a FaaS (Function-as-a-Service), where the application runs the
code via various event triggers. In other words, functions are evoked on-demand, which allows businesses
to enjoy a wide range of benefits that cannot be ignored.

Let’s Talk About Serverless Architecture

Just make sure you are getting your multi-tenant design right before getting started. This will allow you to
make sure that the right information is going to your users without any unintentional mix ups or data leaks.
Assigning unique tenant IDs is an effective way to achieve this goal. If your SaaS application is going to
share tenancies, make sure it can accommodate flexible schema usage as well.

Last but not the least, make sure that you are secure and compliant with the latest data privacy laws like
GDPR, CCPA, and other ones relevant to your geolocation.

Related: How Passwords are Breached?

13 © Frontegg. The Complete Guide

https://frontegg.com/blog/password-hacking-how-passwords-are-breached
https://frontegg.com/blog/multi-tenancy-trends-in-saas-applications

A well-planned and executed SaaS architecture can have high levels of fault tolerance and allow you to make
sure disaster recovery will not be a disaster.

Here are the top three ways to make sure your SaaS app will succeed:

SaaS Architecture for Enterprise: Best Practices

Self Service - Make your SaaS application as self-serving as possible. The more your customer
needs to contact the support team to get things done, the less likely he is to stay with your
brand. Registering, setting up a password, learning about new features, and eventually
upgrading memberships - all of these actions should be user-friendly with the end-user in mind.

Multi-Tenancy - Once your SaaS application is able to serve more than one customer, you can
enjoy more flexibility. This means you can scale up faster with no technical or operational
constraints. Your application/s should also have the ability to accommodate new third-party
applications and external tags for added functionality and customizations benefits.

Microservices -Embracing microservices will help you further simplify your ecosystem for easier
and smoother maintenance (and upgrades). It will also become easier to pin-point issues and
solve them without painful downtime or roll-backs that can damage your brand reputation. Just
make sure you have automated your database governance and management before doing so.

Related: Common Security Pitfalls of User Management

Going the Amazon Web Services (AWS) route? For starters, your database should ideally be Amazon RDS.
PostgreSQL is also a decent option.

Your SaaS tech stack should ideally be powered a Python, React, and AWS programming combo. Many
organizations with non-complex offerings are also going with Node.js instead of Python. Your container
orchestration platform should have Amazon Elastic Container Service (ECS) if you are a startup or have a
medium sized operation. Big ops can pick Amazon Fargate or go for Amazon EKS.

With Microsoft Azure, you have MySQL or PostgreSQL, which can be procured from the Azure portal. Make
sure you are using elastic pools for more flexibility.

On the container front, you will be working with Azure Kubernetes Service, also known as AKS. This will
allow you to smoothly run microservices and run your containers (without managing servers) on Linux.
Microsoft also offers seamless API Management, which runs in a multi cloud setting and allows you to
adopt API architectures across multiple environments.

Working With Top Cloud Providers

14 © Frontegg. The Complete Guide

https://frontegg.com/blog/the-evolution-of-saas-architecture
https://www.dbmaestro.com/blog/database-devops/microservices-in-the-database-world
https://frontegg.com/blog/common-security-pitfalls-of-user-management-what-you-need-to-know

Multi-tenancy is becoming the obvious choice for organizations looking to scale up fast and optimize
development pipelines. While there will always be specific use cases (not many) for the old single-tenant
approach, all modern offerings have to go the multi-tenant way. This is the best way to implement new
features across the board, cut setup costs, and speed up maintenance. Multi-tenancy is no longer a
choice in the SaaS space.

While building your multi-tenant product, user management cannot be overlooked. Frontegg offers an
end-to-end user infrastructure that enables you to focus all your resources on your core software
product. Our multi-tenancy by design approach gives your customers a potent self-service mechanism to
modify and control their security settings on the fly. Don’t believe us? Check it out for yourself.

The Future Belongs to Multi-Tenancy

Start for free >

15 © Frontegg. The Complete Guide

https://portal.frontegg.com/signup

