
1

THE COMPLETE API SEC U R IT Y GU IDE

The Complete
Guide to
API Security

GUID E

2

THE COMPLETE API SEC U R IT Y GU IDE

Table of content
Introduction 3

The Access Token: OAuth vs Client Credentials
vs Single Token Flow 4

OAuth Authorization Flow 4

Client Credentials Flow 5

Single Token Flow 6

The Token Types: ID Token vs Access Token
vs Personal Token 7

ID Token 7

Access Token 8

Personal Token 9

An In-Depth Lookat the Token Repository 10

Authorizationwith API Tokens 11

Tracking Token API Activity: Audit Logs
for Compliance and Scrutiny 13

API Security:10 Best Practices 14

1 – Implement proper token verification 14

2 – Change default credentials 14

3 – Use random access tokens 14

4 – Ensure there is no excessive data exposure 14

5 – Implement proper resource and rate limiting 15

6 – Implement proper function level authentication 15

7 – Mass assignment prevention 15

8 – Perform security misconfiguration checks 15

9 – Prevention against injection attacks 15

10 – Implement sufficient logging and monitoring 16

 the complete api security guide 16

API Security is Just The First Step 17

3

THE COMPLETE API SEC U R IT Y GU IDE

Introduction
The Application Programming Interface (API) has revolutionized the SaaS spa-
ce, allowing developers to focus on what matters most - innovation. However,
these productivity-enhancing elements can become a security liability since
they handle critical and sensitive information. With over 90% of apps testing
positive for some kind of broken access control issue, securing APIs has now
become a priority.

It’s enough to take a look at the latest OWASP Top-10, where broken access
control has taken the first spot, overtaking the evergreen injection vulnerabi-
lities.

But how does one get started with API security? What’s the right way to tackle
this challenge? We have put together this comprehensive guide to help you
get started on the right foot. Besides introducing the key components of the
API ecosystem, you’ll also get access to some useful best practices that will
help you secure your application. Without further ado, let’s dive into the thick
of things.

https://www.zdnet.com/article/owasp-updates-top-10-vulnerability-ranking-for-first-time-since-2017/
https://www.zdnet.com/article/owasp-updates-top-10-vulnerability-ranking-for-first-time-since-2017/
https://owasp.org/www-project-api-security/

4

THE COMPLETE API SEC U R IT Y GU IDE

The Access Token:
OAuth vs Client
Credentials vs Single
Token Flow
The key component when it comes to API usage is the access token, which
helps ensure secure communication between your apps, which has to be
retrieved to gain access to the service. There are many ways to retrieve an
access token. These ways are called flows or grants. OAuth supports various
types of flows. The best-suited flow depends on your use case and application
type - a key security requirement.

Whenever you click on the “Purchase” button on your favorite website to buy a
Christmas gift, your order instantly gets placed. While it might feel like it hap-
pened instantaneously to you, a lot of things happen behind the scenes just to
verify that you are indeed the user that is allowed to be performing this action.
Let’s take a closer look at the three options and what they exactly do.

OAUT H AUTHO RIZATIO N F LOW

https://www.youtube.com/watch?v=KT8ybowdyr0

5

THE COMPLETE API SEC U R IT Y GU IDE

In a nutshell, the OAuth authorization flow helps exchange authorization
codes for tokens, assuming your application is server-side. The application’s
Client Secret is also passed along and keeping it secure is top priority.

The flow looks as follows:

 • The user clicks on the “Login” button in the regular web app
 • The user is redirected to Frontegg’s authorization server
 • Frontegg’s authorization server then redirects the user to the login and autho-
rization prompt
 • The user enter their credentials to login to the application and authorize it
 • The Frontegg authorization server redirects the user back to the web applica-
tion with an authorization code (one-time only)
 • The authorization code is sent to the Frontegg authorization server, along
with the Client Secret and the app’s Client ID
 • All of the mentioned items in the previous step are verified and validated
 • The Frontegg authorization server sends a response with ID and Access To-
kens, sometimes with a Refresh Token as well

 • The app can now use the Access Token to call APIs and access user information
 • The API responds with the data that has been requested.

CLIENT CR E DEN TIA L S F LOW

The Client Credentials Flow allows applications to pass their Client Secret and
Client ID to an authorization server, which authenticates the user, and returns
a token, without any user intervention. These flows are very relevant for ma-
chine-t0-machine (M2M) apps like deamons, back-end services, and CLIs,
where the system authenticates and grants permissions without involving the
users.

6

THE COMPLETE API SEC U R IT Y GU IDE

This is how the flow looks like:

 • 1.The application authenticates with the OAuth authorization server, passing
the Client Secret and Client ID
 • 2.The authorization server checks the Client Secret and Client ID
 • The Access Token is returned to the application
 • The Access Token allows the application to access the target API with the
required user account
 • The API promptly responds with the requested data

SINGLE TOK EN F LOW

In a single token flow, we authenticate using a single token instead of gene-
rating a Client ID and Client Secret. This is to simplify the authentication flow
and provide clients with a token that does not need to pass through the au-
thorization server. There are multiple ways to do this. You can either generate
a JWT token and leave out the expiration field or generate a client token to be
validated against a central token store.

7

THE COMPLETE API SEC U R IT Y GU IDE

The Token Types: ID
Token vs Access Token
vs Personal Token
There are various types of tokens when it comes to securing your API. We’ll be
looking into ID tokens and access tokens in the context of Frontegg.

ID TO K EN

An ID token works as an identifier to indicate that a user has been authentica-
ted. An ID token is encoded in JWT (JSON Web Token), which is a standard for-
mat for making the inspection of tokens and data easier for the applications.

A typical encoded JWT Token looks like the following.

https://auth0.com/docs/secure/tokens/id-tokens

8

THE COMPLETE API SEC U R IT Y GU IDE

This is just the base64 encoded form of the JSON data. It will look like the
following if we base64 decode the JWT Token.

Here, one of the most important properties is the “aud” property. It defines the
final recipient of the token. The ID token may have additional information about
the user, such as their email address, picture, birthday, and so on.

Finally, perhaps the most important thing—the ID token is signed by the issuer
with their private key. This guarantees you the origin of the token and ensures
that it has not been tampered with, which can be verified using the issuer’s
public key.

ACC ES S TOK E N

9

THE COMPLETE API SEC U R IT Y GU IDE

The access token is the artifact that allows the client application to access the
user’s resource. It is issued by the authorization server after it successfully
authenticates the user and obtains their consent. The access token allows a
client application to access a specific resource to perform specific actions on
behalf of the user. It can be a string in any format. A common format used for
access tokens is JWT.

PERS ON AL TOKEN

Personal access tokens are alternatives to using your passwords for authenti-
cating with a service. For example, you can use the web version of GitHub and
use your username and password to authenticate. However, if you are working
with the command-line version of GitHub, then using user credentials for au-
thentication becomes infeasible.

That’s where personal access tokens come into play. Usually, personal authen-
tication tokens are removed from the server if not used for an extended period.
For example, GitHub uses a personal token system to authenticate its users.
But, if a key is not used in over a year, then GitHub automatically removes it
from the user account.

https://www.okta.com/identity-101/access-token/
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

10

THE COMPLETE API SEC U R IT Y GU IDE

An In-Depth Look
at the Token Repository
Now that we know how important tokens are in terms of API security and have
learned about the various types of tokens, we can dive into token generation.

If we use OAuth Flow, we need to generate a Client Secret and ID to save in
the database for future use. The Client ID and Secret will be generated as 128
UUID and version 4. We use the user password, hash it, and salt it to generate
the Client Secret. This makes it harder for attackers to determine passwords
in the case of a database hijack. The Client Secret and Client ID is stored in the
database in such a way that it is easy to find the token for each user.

After considering all the design choices, our final JWT token looks like this:

Here, we are storing the Client ID and Client Secrets. Additionally, we’re also
storing the user ID to maintain a relationship between the token and the user
account. It also contains important information such as scopes relevant to the
token and the time when the token was created.

Once a token is created, it is passed to other apps. As we do not want the 3rd
party service to modify the scopes on the token, API tokens are generated as
immutable objects. Even token creators are not allowed to change scopes/
ClientID/Secret, etc.

Link to code

https://carbon.now.sh/?bg=rgba%28171%2C+184%2C+195%2C+1%29&t=seti&wt=none&l=auto&ds=true&dsyoff=20px&dsblur=68px&wc=true&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=2x&wm=false&code=export%2520interface%2520UserApiToken%2520%257B%250A%2520%2520clientId%253A%2520string%253B%2520%2520%2520%252F%252F%2520The%2520client%2520ID%250A%2520%2520secret%253A%2520string%253B%2520%2520%2520%2520%2520%252F%252F%2520This%2520will%2520be%2520stored%2520as%2520hash%250A%2520%2520userId%253A%2520string%253B%2520%2520%2520%2520%2520%252F%252F%2520This%2520will%2520be%2520the%2520user%2520ID%2520which%2520this%2520token%2520belongs%2520to%250A%2520%2520scopes%253A%2520%255Bstring%255D%253B%2520%2520%2520%252F%252F%2520This%2520will%2520be%2520the%2520scopes%2520relevant%2520for%2520the%2520token%250A%2520%2520createdAt%253A%2520Date%253B%2520%2520%2520%2520%252F%252F%2520This%2520will%2520be%2520the%2520time%2520when%2520the%2520token%2520was%2520created%250A%257D

11

THE COMPLETE API SEC U R IT Y GU IDE

Authorization
with API Tokens
Now that we have seen the general design of API tokens, we will dive into
authorization flow with API tokens. API tokens are not used for authentication
only. We also need to maintain a list of permissions on the signed JWT to verify
each microservice call.

A simple flow looks like this:

First, a user sends the request to the authentication service to create a token.
The authentication service processes the user request and creates the JWT
token to send back to the user. The user then combines the token with their
request and sends it to a 3rd party website for authentication. To verify the
user’s identity, the 3rd party also performs various checks with the authentica-
tion service.

12

THE COMPLETE API SEC U R IT Y GU IDE

A 3rd party website sends the authentication request with the token to the
authentication service. The authentication service now validates the token,
retrieves the scope for that token, and finally signs the JWT token to send it
to a 3rd party website. Now, 3rd party websites can request the resource to a
resource service using a JWT token.

When implemented in code, it looks something like this:

Link to code

https://carbon.now.sh/?bg=rgba%28171%2C+184%2C+195%2C+1%29&t=seti&wt=none&l=auto&ds=true&dsyoff=20px&dsblur=68px&wc=true&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=2x&wm=false&code=import%2520%257B%2520verify%2520%257D%2520from%2520%27jsonwebtoken%27%253B%250A%250Aexport%2520function%2520validateAuthenticationAndScopes%28%257B%2520scopes%2520%253D%2520%255B%255D%2520%257D%29%2520%257B%250A%2520%2520return%2520async%2520%28req%252C%2520res%252C%2520next%29%2520%253D%253E%2520%257B%250A%2520%2520%2520%2520const%2520authorizationHeader%253A%2520string%2520%253D%2520req.header%28%27authorization%27%29%253B%250A%2520%2520%2520%2520if%2520%28%21authorizationHeader%29%2520%257B%250A%2520%2520%2520%2520%2520%2520return%2520res.status%28401%29.send%28%27Unauthenticated%27%29%253B%250A%2520%2520%2520%2520%257D%250A%250A%2520%2520%2520%2520const%2520token%2520%253D%2520authorizationHeader.replace%28%27Bearer%2520%27%252C%2520%27%27%29%253B%250A%250A%2520%2520%2520%2520%252F%252F%2520Verify%2520the%2520JWT%2520token%2520signature%2520using%2520the%2520public%2520key%250A%2520%2520%2520%2520verify%28token%252C%2520publicKey%252C%2520%257B%2520algorithms%253A%2520%255B%27RS256%27%255D%2520%257D%252C%2520%28err%252C%2520decoded%253A%2520any%29%2520%253D%253E%2520%257B%250A%2520%2520%2520%2520%2520%2520if%2520%28err%29%2520%257B%250A%2520%2520%2520%2520%2520%2520%2520%2520res.status%28401%29.send%28%27Authentication%2520failed%27%29%253B%250A%2520%2520%2520%2520%2520%2520%2520%2520return%2520next%28err%29%253B%250A%2520%2520%2520%2520%2520%2520%257D%250A%250A%2520%2520%2520%2520%2520%2520if%2520%28scopes%2520%2526%2526%2520scopes.length%2520%253E%25200%29%2520%257B%2520%2520%2520%2520%2520%2520%2520%2520%250A%2520%2520%2520%2520%2520%2520%2520%2520for%2520%28const%2520requiredScope%2520of%2520scopes%29%2520%257B%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520if%2520%28%21decoded.scopes.includes%28requiredScope%29%29%2520%257B%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520res.status%28403%29.send%28%27Insufficient%2520scopes%27%29%253B%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520return%2520next%28%27Insufficient%2520scopes%27%29%253B%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%257D%250A%2520%2520%2520%2520%2520%2520%2520%2520%257D%250A%2520%2520%2520%2520%2520%2520%257D%250A%250A%2520%2520%2520%2520%2520%2520%252F%252F%2520And%2520move%2520to%2520the%2520next%2520handler%250A%2520%2520%2520%2520%2520%2520next%28%29%253B%250A%2520%2520%2520%2520%257D%29%253B%250A%2520%2520%257D%253B%250A%257D

13

THE COMPLETE API SEC U R IT Y GU IDE

Tracking Token API
Activity: Audit Logs
for Compliance and
Scrutiny
As security is the main focus, it is essential to have traceability on our API
tokens. This means we need to audit every authentication and every API token
activity. There are a few things to keep in mind when you are implementing
traceability for API tokens. It is called the 5 Ws checklist.

 • The Who – It should be possible to identify which user created the API token.
So, if some API token has a security compromise attached to it, we can link
that incident to a user.
 • The When – It should be possible to identify the time an API token was created.
This helps triage a security incident and identify the specific time range when
a security compromise occurred.
 • The What – What scopes are attached to this token? Knowing this helps one
identify permissions associated with the API token.
 • The Where – Important user data, such as from where this token was acces-
sed, should be logged in the database.
 • The How – How was that token used? The request method, context, and last
authenticated time should be logged.

Injection vulnerabilities have been knocked off
the top of the latest OWASP Top-10 rankings by
broken access control flaws. API security has to
be taken seriously today.

FRONTEGG
Aviad Mizrahi
co-founder and CTO

14

THE COMPLETE API SEC U R IT Y GU IDE

API Security:
10 Best Practices
While this list of best practices is not exhaustive by any way or form, it is a gre-
at way to get started and improve your security posture. Let’s get started.

1 – IMPLEME NT PRO PER TO KEN V ERIFICATION

If the API backend is verifying the token but is not checking if the token is asso-
ciated with the object that is being requested, it can result in a case of broken
object-level authorization. In this vulnerability, an attacker obtains access to
an object by breaching the security of other objects or data streams.

In most cases, the reason behind broken access control is improper permis-
sion assignments. To implement it properly, various authorization and verifi-
cation checks should be performed using the id assigned from the session,
instead of the one given by the user.

2 – CH ANG E DEFAU LT CREDEN TIA LS

It is not uncommon for API developers to use default credentials on APIs to
authenticate API users, which leads to broken authentication and security
compromises.

3 – US E R AN DO M ACCES S TO KEN S

One way to secure yourself against broken authentication is to use random
access tokens and short-lived tokens while rate-limiting API requests. Multi-
-factor authentication should also be employed to ensure security even when
credentials are compromised.

4 – E NS UR E THERE IS N O EXCES SIVE DATA EXPOSURE

In various cases, APIs return more data than required by the application. A
potential attacker can take advantage of this excess information to attack the
API service. To prevent these bugs, one should never rely on client applications
for data filtering, and always ensure use cases before sending any personally
identifiable information in response.

15

THE COMPLETE API SEC U R IT Y GU IDE

5 – IM PLEME NT PRO PER RESO URCE AND RATE LIMITING

If not handled properly, many APIs do not check requests made by API users.
For every request, there is some cost and overhead attached. If attackers send
multiple requests until the backend is out of resources, then the API service’s
availability will be compromised. These attacks are more commonly called de-
nial of service attacks.

6 – IM PLE MEN T PRO PER F U NCT IO N LEVEL AUTHENTICATION

It is really common for API developers not to implement function-level autho-
rization. This results in an attacker carrying out tasks that are not permitted.
Consider the scenario of a deleteUser endpoint on a query. Only authorized
administrators should be able to call that query. But, if anyone can call the end-
point, then it would be a huge security risk.

7 – MAS S AS S IGN MEN T PREVENT ION

In cases where an API is used to modify some values of an object, input is
directly processed to modify values without any checks. For example, the follo-
wing call is made by a user to change the account name.

GET /changeAccountName?name=Bob

But malicious actors can specify additional parameters to compromise the
integrity of the object. A malicious request would look like this::

GET /changeAccountName?name=Bob&AccountBalance=999

To prevent this, all fields that are not supposed to be changed by the user sho-
uld be set to read-only.

8 – P ER FOR M SECU RIT Y MISCO N F IGURATION CHECKS

Attackers frequently come up with vulnerabilities in applications and software
components. If your backend components and applications are vulnerable,
it can lead to significant data breaches. To prevent this, one should keep all
backend infrastructures and services updated with all patches and perform
regular security audits.

9 – PR E VE NTI ON AGA INST IN JECT ION AT TACKS

IInjection attacks are one of the biggest threats to applications working with
web components. Injection attacks occur if the input from the user is comple-
tely trusted and directly processed by the backend without any input filter.
This can result in a data compromise or even a complete web service takeover.

https://www.cisa.gov/uscert/ncas/tips/ST04-015
https://www.cisa.gov/uscert/ncas/tips/ST04-015

16

THE COMPLETE API SEC U R IT Y GU IDE

10 – I MPLEME NT SU F F ICIEN T LO GGING AND MONITORING

It is common for many large-scale deployments to set up infrastructures for
logging and monitoring. If this is designed poorly and the logs are not properly
monitored with security information and event management (SIEM) systems, it
becomes a huge issue when a security compromise occurs.

https://www.mcafee.com/enterprise/en-us/security-awareness/operations/what-is-siem.html

17

THE COMPLETE API SEC U R IT Y GU IDE

APIs are everywhere and the possibility of getting hacked is
real. While the task of securing your API may seem daunting,
you can focus on your business without worrying about se-
curity by implementing the tips provided in this guide. But API
security is just one aspect of comprehensive API management,
which needs to be taken seriously to achieve maximum securi-
ty and optimize performance metrics.

You will also need to properly govern your APIs to give devs
proper access to documentation, while also providing them
with the required authentication and authorization capabilities.
Besides governance, there is also a need for real-time data to
gain insights into usage patterns and promote analytical deve-
lopment. APIs are great to have in any ecosystem, but only an
end-to-end management infrastructure can help you stay safe
and secure your data as you scale up.

Secure your APIs
with Frontegg!

Contact us ›

API Security is Just
The First Step

https://frontegg.com/contact

	Introduction
	The Access Token: OAuth vs Client Credentials vs Single Token Flow
	OAuth Authorization Flow
	Client Credentials Flow
	Single Token Flow

	The Token Types: ID Token vs Access Token vs Personal Token
	ID Token
	Access Token
	Personal Token

	An In-Depth Lookat the Token Repository
	Authorizationwith API Tokens
	Tracking Token API Activity: Audit Logs for Compliance and Scrutiny
	API Security:10 Best Practices
	1 – Implement proper token verification
	2 – Change default credentials
	3 – Use random access tokens
	4 – Ensure there is no excessive data exposure
	5 – Implement proper resource and rate limiting
	6 – Implement proper function level authentication
	7 – Mass assignment prevention
	8 – Perform security misconfiguration checks
	9 – Prevention against injection attacks
	10 – Implement sufficient logging and monitoring
	the complete api security guide

	API Security is Just The First Step

